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Abstract
Singly charged buckminsterfullerene anions, C−

60, are subject to a strong intramolecular T ⊗ h
Jahn–Teller (JT) effect. When such ions interact with other C−

60 ions in a solid through a
cooperative JT effect, they will be subject to an additional interaction. There are a number of
different mechanisms that can cause this interaction. However, in the molecular field
approximation, all can be modelled phenomenologically in terms of a symmetry-lowering
interaction written in terms of a linear combination of electronic operators for the h modes
involved in the intramolecular JT effect. We will consider the combined effect of this distortion
and the intramolecular JT effect. We will analyse the lowest adiabatic potential energy surface,
and calculate the energies of the resultant vibronic states. The results are shown to have a
complicated dependence on the particular combination of h modes chosen, and the energies of
the resultant vibronic states cannot easily be deduced from the form of the potential alone.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Solids formed by combining C60 fullerene molecules and alkali
metals to form solids of the type AnC60 (n = 1–6) have a
number of unusual and intriguing physical properties. A3C60

solids show unexpected conducting and superconducting
properties [1–3], with K3C60 being superconducting at
temperatures below 18 K, Rb3C60 below 28 K and Cs3C60

below 47 K [4]. In contrast, A4C60 compounds are insulators.
AC60 compounds form a polymeric structure in ambient
conditions, with RbC60 and CsC60 undergoing a metal–
insulator phase transition at Tc ∼ 50 K and Tc ∼ 40 K
respectively [5–7].

The structure of AnC60 solids can also vary. Many of
these materials are face centred cubic (fcc) structures, but
some are body centred tetragonal (bct) and body centred
cubic (bcc) structures. The low temperature structure of AC60

is orthorhombic with an unusually short separation of 9.1–
9.4 Å between the centres of C60 molecules along one of the
crystallographic directions [8]. In addition, amorphous-carbon
structures based on linearly polymerized C60 molecules have
been found under a pressure above 5 GPa [9, 10]. In a cluster
of A3C60 molecules at room temperature, when the fcc solid
form of C60 is maintained, the molecules rotate randomly about

their lattice positions between different orientations. In fact
the rotational levels are much closer to each other than the
vibrational levels, meaning that the molecules populate the
rotational levels much more easily. However, at temperatures
lower than 261 K, two of the rotational degrees of freedom
freeze out, resulting in a lowering of symmetry and merohedral
order [11, 12]. Similar conclusions have also been found in
compounds containing C2−

60 ions [13].
Influence of the vibrational motion of the C60 molecule

on the electronic motion is known to be important in these
fullerene systems. Isolated fullerene ions Cn−

60 (n = 1–5) are
subject to an intramolecular Jahn–Teller (JT) effect of the form
T ⊗ h, where a triply degenerate electronic state T is coupled
to a five-dimensional vibrational mode h [14]. The JT effect
causes an instantaneous distortion of the icosahedral C60 cage
to a lower symmetry. However, there are a number of different
distorted configurations all having the same energy. Quantum-
mechanical tunnelling between the equivalent configurations
restores the icosahedral symmetry in the dynamical JT effect.
However, to understand the properties of fullerene solids,
it is necessary to go beyond studies of isolated fullerene
centres and to consider interactions between fullerene centres
and/or interactions with a surface. There are various possible
mechanisms for producing interactions between C60 ions in
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C60 solids. One factor which is believed to play a major
role in determining the contrasting behaviour of A3C60, A4C60

and AC60 compounds is the cooperative JT (CJT) interaction
between the different ions [15]. As a result of the CJT effect,
different possible JT distortions are no longer equivalent and
so the dynamical JT effect does not prevail in the lattice. JT
distortions of individual centres can be locked in place and
in general the lattice configuration will consist of a periodic
arrangement of statically distorted ions [16].

Various correlation mechanisms have been proposed to
describe the cooperative interactions between JT centres, some
of which involve phonons and some of which do not. In all
cases, the interaction Hamiltonian Hi j between centres i and
j can be represented phenomenologically (independent of the
mechanism involved) using terms quadratic in the collective
displacements Qiλ and Q jλ of the vibrationally coupled
modes λ at sites i and j , or equivalently a form quadratic
in the electronic operators σiλ and σ jλ used to describe the
intramolecular JT interaction at sites i and j [15, 16]. One way
to proceed is to then use the molecular field approximation.
After making some appropriate transformations, this results in
a mean-field Hamiltonian Hmf

i for site i which is equivalent to
the intramolecular JT Hamiltonian for site i plus an additional
contribution Hs = − ∑

λ wλσλ, where the wλ are constants
whose values depend on the form of the interaction [16, 17].
The result for centre i is the same Hamiltonian as would
be used for an intramolecular JT effect plus an additional
symmetry-lowering distortion. The latter is sometimes referred
to as a ‘strain’, although the origin of this term will not be that
of an external stress on the system [15].

In this paper, we will be concerned with JT effects
experienced by fullerene anions C−

60. From group theory,
coupling of isolated ions to two ag and eight hg vibrational
modes is allowed. However, the coupling to the ag modes
does not have any significance, and for most purposes the
coupling to the eight hg modes can be replaced by coupling
to a single effective mode [18]. Therefore, the relevant
intramolecular JT effect for C−

60 is a T1u ⊗ hg system [14].
The nuclear coordinates Qλ thus correspond to the vibrational
mode hg. By convention, the components λ are denoted by
{θ, ε, 4, 5, 6} [19]. We will consider a linear intramolecular
JT effect subject to an additional symmetry-lowering distortion
that can be written in terms of the electronic operators σλ
relevant to the h mode in this system. The distortion can act
along the direction of any one of the components λ, or along
a linear combination of these directions. We will analyse the
shape of the lowest adiabatic potential energy surface (LAPES)
in different situations in order to understand the effect of the
direction of the distortion, and investigate how the energies
of the resultant vibronic states vary with the magnitude and
direction of the distortion.

2. The Hamiltonian

The total Hamiltonian of a linear T ⊗ h JT system subject
to an additional symmetry-lowering interaction Hs is H =
Hvib + Hint + Hs, where Hvib and Hint are vibrational and

electron–phonon interaction terms respectively, given by

Hvib = 1

2

∑

ν

(
P2
λ

μ
+ μω2

H Q2
λ

)

σo

Hint = kH

∑

λ

Qλσλ.

(1)

λ is summed over the five vibrational degrees of freedom
{θ, ε, 4, 5, 6}. Qν and Pλ are the collective coordinates and
their conjugate momenta respectively. kH is the linear JT
coupling constant, μ is the reduced mass of the system and
ωH is the frequency of vibration. σo is the identity matrix in
three dimensions. Explicitly, we can write [14, 20, 21]

Hint = kH

2

⎛

⎝
Qθ − √

3Qε −√
3Q6 −√

3Q5

−√
3Q6 Qθ + √

3Qε −√
3Q4

−√
3Q5 −√

3Q4 −2Qθ

⎞

⎠ (2)

from which the definitions of the electronic interaction
matrices σλ can be deduced. When defined in this manner, kH

is equivalent to the coupling constant k of [14], and is related to
the constant VH used in [21] by the relation kH = −2VH/

√
10.

2.1. Separation of coordinates

When linear JT effects only are included in the T ⊗ h problem,
the LAPES contains a four-dimensional trough of equivalent-
energy points. The motion of a system subject to this JT effect
will consist of vibrations across and rotations of a distortion
around the trough, often called pseudorotations. These should
not be confused with the real rotations of the molecule. The
trough has SO(3) symmetry, which is accidentally higher than
the Ih symmetry expected for the T ⊗ h problem. Due to this
symmetry, it is useful to write the Qλ in the polar form [14, 20]

Qθ = ρ

(
1

2
(3 cos2 θ − 1) cosα +

√
3

2
sin2 θ sinα cos 2γ

)

Qε = ρ

(√
3

2
sin2 θ cos 2φ cosα − cos θ sin 2φ sinα sin 2γ

+ 1
2 (1 + cos2 θ) cos 2φ sinα cos 2γ

)

Q4 = ρ

(√
3

2
sin 2θ sinφ cosα − 1

2
sin 2θ sinφ sinα cos 2γ

− sin θ cosφ sinα sin 2γ

)

Q5 = ρ

(√
3

2
sin 2θ cosφ cosα − 1

2
sin 2θ cosφ sinα cos 2γ

+ sin θ sinφ sinα sin 2γ

)

Q6 = ρ

(√
3

2
sin2 θ sin 2φ cosα + cos θ cos 2φ sinα sin 2γ

+ 1
2 (1 + cos2 θ) sin 2φ sinα cos 2γ

)

,

(3)

2
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where ρ is the radial distance, (θ , φ, γ ) are Euler angles,
and α is an extra angle to complete the five-dimensional Q-
space [14, 20]. For all points to be included once only, we can
choose 0 � ρ < ∞, 0 � φ � 2π , 0 � θ � π , 0 � γ � 2π
and 0 � α < π/3.

It is also useful to rewrite the Hamiltonian H in
a rotating coordinate frame by multiplying by a rotation
matrix R(γ, θ, φ) [14, 20] such that the rotated interaction
Hamiltonian H̃int = RHint R−1 takes the diagonal form

H̃int = kHρ

2

×
⎛

⎝
cosα − √

3 sinα 0 0
0 cosα + √

3 sinα 0
0 0 −2 cosα

⎞

⎠ . (4)

From this, it can be seen that the lowest eigenvalue is lowest of
all when α = 0 [14]. Also, the eigenvalue is independent of the
angles θ , φ and γ , which is consistent with the interpretation
of the LAPES being a trough.

If we explicitly write Pλ = −ih̄∂/∂Qλ, the vibrational
Hamiltonian in the five-dimensional polar coordinates be-
comes

Hvib =
[

− h̄2

2μρ2

∂

∂ρ

(

ρ2 ∂

∂ρ

)

+ 1

2
μω2

Hρ
2 + L̂2

6μρ2

]

σo (5)

where L̂2 is the usual angular momentum operator

L̂2 = −h̄2

[
1

sin θ

∂

∂θ

(

sin θ
∂

θ

)

+ 1

sin2 θ

∂2

∂φ2

]

. (6)

The transformed Hamiltonian for the additional distortion Hs

is a complicated result involving θ , φ and γ . However, we
can make the approximation that mixing between the different
APESs due to the additional distortion can be neglected. This
gives us the contributions

Wθ = 1
4wθ(1 + 3 cos 2θ)

Wε =
√

3

2
wε sin2 θ cos 2φ

W4 =
√

3

2
w4 sin 2θ sinφ

W5 =
√

3

2
w5 sin 2θ cosφ

W6 =
√

3

2
w6 sin2 θ sin 2φ

(7)

from each of the component ν. Therefore, the equation that
gives the LAPES takes the form

[

− h̄2

2μρ2

∂

∂ρ

(

ρ2 ∂

∂ρ

)

+ L̂2

6μρ2
+ Ueff

]

�g = Eg�g (8)

where �g and Eg are the rovibronic (rotational + vibronic)
wavefunction and the energy of the LAPES respectively and
Ueff is the effective potential

Ueff = μω2
H

2
ρ2 − kHρ +

∑

λ

Wλ. (9)

The wavefunction �g at a given point (ρ, θ, φ, γ ) can be
written as a product of electronic (ψg), vibrational (χ ) and
rotational wavefunctions (ψR)

�g = ψg(θ, φ)× χ(ρ)× ψR(θ, φ), (10)

where we already know that [21]

ψg(θ, φ) =
⎛

⎝
sin θ cosφ
sin θ sinφ

cos θ

⎞

⎠ . (11)

The vibrational wavefunction then satisfies the equation [21]

[

− h̄2

2μ

∂2

∂ρ2
− h̄2

μρ

∂

∂ρ
+ 1

2
μω2

Hρ
2 − kHρ

]

χ(ρ) = Evibχ(ρ)

(12)
and the rotational part is governed by the equation

(
L̂2

6μρ2
+ Wν

)

ψR(θ, φ) = ERψR(θ, φ). (13)

Equations (12) and (13) are coupled through the coordinate ρ
so can not be solved independently.

Taken on its own, (12) represents a displaced harmonic
oscillator at radius ρT = kH/(μω

2
H), whose solutions can be

written in terms of Hermite Polynomials. It is a reasonable
assumption that the rotational motion and the additional
distortion will not change the radius of the trough and hence
this solution to the vibrational equation. We can therefore set
ρ = ρT in (13) and solve it independently from (12).

3. Solutions to the rotational differential equations

In order to understand the effects of the additional distortion, it
is first useful to look at the effective potential Ueff evaluated
at ρ = ρT for distortions in different directions ν. From
this, we can see that a distortion in the θ direction will cause
a maximum-energy lowering of −|wθ |/2 for wθ positive or
−|wθ | for wθ negative. Furthermore, as Wθ only contains the
angle θ , the minimum-energy points occur for all values of φ
(for both signs of wθ ). Physically, this means that a θ -type
distortion will result in one of the two pseudorotations being
converted into a vibration. However, distortions in the other
four directions of coordinate space (ν = ε, 4, 5, 6) all cause
a maximum-energy lowering of −√

3|wν |/2, independent of
the sign of wν . Also, the minimum-energy points occur for
specific values of θ and φ, which physically means that both
pseudorotations have been converted into vibrations.

3.1. Distortion in θ direction

When we consider a distortion in the θ direction only, we find
that for wθ > 0, a minimum in Ueff occurs at θ = π/2 and a
maximum at θ = 0. For wθ < 0, this situation is reversed
with the minimum occurring at θ = 0 and the maximum
at θ = π/2. The depth of the minimum increases as the
magnitude of the JT coupling kH increases.

Separated solutions to equation (13) can be sought in
terms of a product of functions �(θ) and �(φ) of the angles

3
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θ and φ respectively. A general form for the rotational
wavefunction ψR will then be a linear combination of the
products. From the Equation in φ and knowledge (from the
analysis of Ueff) that we do not expect |ψ2

R| to depend upon φ,
we deduce that�(φ) can be represented by terms proportional
to exp(imφ), with m being an integer.

By applying the change of variable x = cos θ , the
equation in � becomes

d2�(x)

dx2
− 2x

1 − x2

d�(x)

dx

+
[

2aθ (1 − 3x2)+ cθ
1 − x2

− m2

(1 − x2)2

]

�(x) = 0, (14)

with aθ = 3μwθρ2
T /(2h̄2) and cθ = 6μρ2

T ERθ/h̄
2. This is a

standard differential equation whose solutions are spheroidal
functions. The spheroidal functions can be expressed as a
linear combination of Associated Legendre polynomials Pm

l ,
where l and m are the usual angular momentum quantum
numbers [22]. Therefore, for any given value of m, we can
write [22]

ψR(θ, φ) =
∞′∑

s=0,1

Cm
s Y m

m+s(θ, φ) (15)

where s = l − m and the prime indicates that the sum is from
zero except for m = 0 where the sum is from 1. The Y m

m+s

are spherical harmonics and the Cm
s are coefficients whose

values can be found recursively after solving a transcendental
equation for the eigenvalues [22]. Different solutions exist for
odd and even values of l. Also, the transcendental equation
results in multiple solutions for each given value m. The
solutions for a given value of m will be labelled in order of
increasing energy by an index n, where n = 0 corresponds to
the state with lowest energy.

To render the solutions physical, we require that �g be
periodic under the transformations θ → π + θ and φ →
φ + 2π [20]. Under this transformation, ψg changes sign,
so to preserve the overall sign of �g, ψR and consequently
�(θ) should change sign. As in the T ⊗ h problem with
no distortion, l must be odd to satisfy the above conditions.
Furthermore, for the wavefunctions to satisfy these conditions
and be physically acceptable requires that m be odd forwθ > 0
and even for wθ < 0.

The wavefunctions can be computed numerically for
specific values of kH and wθ . Convergence is achieved by
including the first 25 terms in the sum over s. For the lowest
states (i.e. with m = 1 for wθ > 0 and m = 0 for wθ < 0),
|ψR|2 is found to be a Gaussian-like function of θ centred
over the position of minimum energy. The wavefunction
becomes much more strongly localized around the position of
minimum energy at strong JT coupling than at weak coupling.
For example, with wθ = 0.5h̄ωH, |ψR|2 is approximately a
Gaussian with standard deviation σ ≈ 0.52 for kH = h̄ωH,
whereas σ is less than half this at ≈0.24 for kH = 10h̄ωH.
This behaviour is to be expected as the potential minimum will
be deeper for stronger JT couplings.

3.2. Distortion in ε, 4, 5 or 6 directions

The minima in Ueff for distortions in directions ν = 4, 5 and
6 are at the same depth as minima in the ε direction for an
equivalent magnitude distortion. It is therefore sufficient to
consider the effects of Wε only. For the rotational wavefunction
to be physically acceptable and to be invariant under the
transformations φ → φ + 2π and θ → θ + π , we require
m to be odd for an ε-type distortion of either sign. It should be
noted that m must also be odd for a 6-type distortion, but that
it must be even for a 4 or 5-type distortion.

Unlike with a θ -type distortion, minima in Ueff for an
ε-type distortion occur at particular values of φ as well as
particular values of θ . More specifically, they occur at θ =
π/2, and φ = {π/2, 3π/2} for wε > 0 and at φ = {0, π} for
wε < 0. The form of the potential for wε < 0 is exactly the
same as that for a positive value of wε of the same magnitude
except for a displacement of the values of φ by π/2. Therefore,
the expected rotational wavefunctions will also be identical
except for the displacement of φ values, and the energies of the
rotational wavefunctions will be exactly the same. This means
that it is only necessary to consider the magnitude of wε and
not its sign.

The differential equation for a distortion in the ε direction
is non-separable, unlike for the θ direction. However, we can
still seek a solution in the form of a linear combination of
products of functions �(φ) and �(θ). To determine the form
of those functions, we note that the term Wε can be written in
terms of the spherical Harmonics Y ±2

2 (θ, φ) as:

wε
√

3

2
sin2 θ cos 2φ = wε

√
2π

15
(Y −2

2 (θ, φ)+Y 2
2 (θ, φ)). (16)

The conditions on � are such that we seek a solution of the
form

�R =
∑

s

Cm
s Pm

m+s (cos θ)

{
sin mφ wε > 0

cos mφ wε < 0
(17)

where the Cm
s are coefficients to be determined. We can

substitute this and equation (16) into (13), multiply by Y m′∗
l′

and integrate over θ and φ. The integrals can be expressed in
terms of Wigner 3 j–symbols (or Clebsch–Gordan coefficients)
which vanish unless l = l ′ or l = l ′ ± 2, and m ′ = m ± 2. This
defines recursion relations, which will not be explicitly written
here due to their complex form.

The rotational wavefunctions can again be computed
numerically. In this case, 50 terms are required to ensure
convergence. Results for |ψR|2 are given in figures 1(a) and (b)
for kH = h̄ωH and wε = ±0.5h̄ωH respectively. As expected,
maxima in the lowest rotational function occur at angles giving
minima in Ueff. The average of |ψR|2 also occurs at these
minima for the next-lowest rotational function. It should be
noted that Wθ could have been written in terms of Y 0

2 (θ, φ)

and solved in the same manner as the ε term, although this was
not done as the differential equation has well-known solutions.

4
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Figure 1. Plots the square of the rotational wavefunction, |ψR|2, for
(a) the ground state, and (b) the next-lowest state with kH = h̄ωH and
with an ε-type distortion wε = 0.5h̄ωH.

3.3. Distortion in other directions

So far, we have considered symmetry-lowering distortions in
the directions of coordinate space we have defined to be θ , ε,
4, 5 and 6. However, it is obviously possible to have distortions
in directions that are a linear combination of these directions.
The general case with a distortion in a linear combination of all
five directions is complicated due to the high dimensionality of
the problem. Therefore, we will only consider distortions in a
linear combination of two of the basic directions above. This
will be sufficient to illustrate the complexity of the problem.

We will consider a (dimensionless) combination

Eνλ = Wν cos β/wν + Wλ sinβ/wλ (18)

of two different distortions for all pairs of values of ν and λ
taken from the set {θ, ε, 4, 5, 6}. Calculating the minimum in
the energy of this factor as the angles θ and φ are varied allows
us to examine the effect of varying the contribution from two
different distortions for a fixed overall magnitude of distortion.
We find that the results fall into four categories. Firstly, the
energy of the combinations Wε–W6, W4–W5, W4–W6 and W5–
W6 are all independent of the mixing angle β , taking the
value −√

3/2 found for the separate components {ε, 4, 5, 6}.
However, the same is not true for other combinations of these
four directions. For ν = ε and λ = 4, the minimum energy is
a minimum of

√
3 cos β/2 and the value of Eνλ with φ = π/2

and tan 2θ = 2 tan β , as shown in figure 2(a). For ν = ε and
λ = 5, the minimum energy is a minimum of −√

3 cos β/2

Figure 2. Variation in Eνλ (dimensionless units) as a function of the
angle β for (a) ν = ε and λ = 4 (results for λ = 5 are the same if the
x-axis runs from β = π to 3π), (b) ν = θ and λ = ε or 6, (c) ν = θ
and λ = 4 or 5.

and the value of Eνλ with φ = π/2 and tan 2θ = −2 tan β .
The result is the same as in figure 2(a) but where the x-axis is
taken to run from β = π to 3π rather than from β = 0 to π .

As we have already found that the results for a distortion in
the direction θ are different to those in the other four directions
we have considered, it is not surprising that the results when a
θ -type distortion is mixed with a distortion in another direction
are also different. For combinations ν = θ and λ = ε or
6, the minimum energy for a given mixing angle β is the
minimum of {cos β, cos(β+2π/3), cos(β+4π/3)}, as shown
in figure 2(b). The remaining cases are those of ν = θ and
λ = 4 and 5. Here, the result is the minimum root of Eνλ with
tan 2θ = 2 tan β/

√
3, as shown in figure 2(c).

One feature of all of our results is that the energy change
due to a distortion of magnitude w always lies between −w/2
and −w. The maximum-energy change of −w occurs for a
θ -type distortion with wθ negative, as well as for certain other

5
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combinations of our basic distortion directions. Similarly, the
smallest energy change for a fixed magnitude of distortion
w occurs for a θ -type distortion with wθ positive and other
combinations of directions.

The results above show that the topology of the APES
when uniaxial distortions are applied is rather complex.
However, this is not obvious without a detailed examination of
the potential energy terms. Linear JT coupling alone produces
a trough of equal minimum-energy points that can be mapped
onto the surface of a two-dimensional sphere [14]. However,
as we have seen, the effect to the sphere of different symmetry-
lowering distortions are far from equivalent.

4. Energies of rovibronic states

To understand how the T ⊗ h JT system behaves under a
symmetry-lowering distortion, we have to evaluate the total
energy of the system. In general, this can be written as

Eh =
∫
� ′

g(θ
′, φ′γ ′)H�g(θ, φγ ) d� d�′

∫
� ′

g(θ
′, φ′γ ′)�g(θ, φγ ) d� d�′ (19)

where �
′
g and �g are the total wavefunctions on the LAPES

given by equation (10), evaluated at different points on the
trough of minimum-energy points, and d� = sin θ dθ dφ and
d�′ = sin θ ′ dθ ′ dφ′ are elements of volume. The numerator
and denominator are therefore both four-dimensional integrals.

In order to display the results, it is convenient to define a
coupling constant KH = kH

√
h̄/μωH, which has dimensions

of energy. Also, in order to distinguish the effects of the
additional distortion from the effect of the JT coupling alone,
rather than considering Eh alone it is more useful to look at the
term (Eh + EJT)/h̄ωH where [14, 21] EJT = K 2

H/(2h̄ωH) is
the JT energy, i.e. the energy of the lowest point on the LAPES
when no additional distortion is present.

In this paper, we will only consider the ground vibrational
state with different rotational levels, although the calculations
can be extended to higher vibrational states. In this case, we
can extract out the zero-point energy for zero vibronic coupling
and write

Eh + EJT

h̄ωH
= 5

2
+ 3K 2

H

4
I (KH, w), (20)

with

I (KH, w) =
∫

Z 3e
3K 2

H
4 (Z2−1)eim(φ ′−φ)ψ ′

RψR d� d�′
∫

Ze
3K 2

H
4 (Z2−1)eim(φ ′−φ)ψ ′

RψR d� d�′
− 1 (21)

for a given rotational state. Z is the electronic overlap between
two points on the trough given by

Z = cos θ ′ cos θ + sin θ ′ sin θ cos(φ′ − φ). (22)

ψ ′
R and ψR are the rotational wavefunctions at points
(θ ′, φ′, γ ′) and (θ, φ, γ ) respectively. I (KH, w) can be
evaluated for specific values of m.

As an alternative to the calculation above, low-lying
energy levels can be found numerically using a recursive

Lanczos technique [23–27]. An advantage of this method is
that it automatically includes both rotational and vibrational
excitations. However, applying this technique to our system
brings technical problems. To avoid degenerate ‘repeated’
eigenvectors, the number of starting vectors must be set to
fifteen or more, but when this is done computational problems
arise. We will not consider this method any further in this
paper.

4.1. Distortion in the θ direction

First of all we will consider results for the rotational states
associated with the ground vibrational state in the limit when
the θ -type distortion tends to zero in order to confirm that
our method gives results consistent with previous work. In
this limit, we expect to obtain states which are degenerate
at an energy of 1.5h̄ωH in strong JT coupling, representing
the presence of three vibrations and two (pseudo)rotations.
In zero JT coupling, we expect energies of 2.5h̄ωH, 3.5h̄ωH,
4.5h̄ωH etc [21], corresponding to a five-dimensional harmonic
oscillator. Each curve will have a degeneracy l = 2m + 1,
where l is odd, such that the lowest curve is for l = 1, the next
curve for l = 3 etc.

For any given value of m, we can calculate rotational
levels for the zero distortion case using our θ -type rotational
wavefunctions by setting the distortion to zero. Figure 3(a)
shows the value of (Eh + EJT)/h̄ωH for the first three rotational
states (n = 0, 1 and 2) as calculated using either the
wavefunctions appropriate to positive wθ and with m = 1,
or using the wavefunctions appropriate to negative wθ and
with m = 0. It can be seen that the results do indeed show
the behaviour that we expect in this limit. Note that results
have not been given for KH/h̄ωH < 1 as the wavefunctions
are not appropriate for weak JT couplings. However, our
results for KH/h̄ωH = 1 are consistent with results for states
tending to the expected limits of 2.5h̄ωH, 3.5h̄ωH and 4.5h̄ωH

as KH → 0.
Next we consider the effects of a θ -type distortion.

This will lift the m-fold degeneracy of the rotational levels.
Figures 3(b) and (c) give results for the lowest three rotational
levels (n = 0–2) of the set m = 0 for wθ < 0, and the set
m = 1 for wθ > 0. In the latter case, m = −1 gives identical
results to m = 1. Figure 3(b) gives the results for a weak
distortion of |wθ | = 0.5h̄ωH, and figure 3(c) gives the results
for a strong distortion of |wθ | = 5h̄ωH. As expected, the
results with a distortion are lower than those with no distortion.
Furthermore, the lowering for wθ < 0 is approximately twice
the lowering for wθ > 0. This is also expected from the
potential Ueff, which shows that the minimum is lowered twice
as much for a negative distortion as it is for a positive distortion
of the same magnitude. This result is easiest to observe in
figure 3(c) where the effects of the distortion are much larger
than in figure 3(b).

While the difference in energy between the results
with positive and negative distortions can be explained by
examining Ueff, the absolute values of the energies can not be
explained without performing the detailed calculation. Also,
Ueff does not explain why the results for different values of n
with a distortion do not reach the same value as each other in
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Figure 3. Plot of (Eh + EJT)/(h̄ωH) versus KH/h̄ωH for a distortion
applied in the θ direction for (a) no symmetry-lowering distortion
(wθ → 0), (b) weak distortion (wθ = ±0.5h̄ωH), and (c) strong
distortion (wθ = ±5h̄ωH). In all plots, the solid lines are rotational
levels n = 0, the dashed lines are for n = 1 and the dot-dash lines are
for n = 2. The lowest three (blue) lines for KH/h̄ωH = 10 are the
m = 0 levels for negative wθ , and the highest three (black) lines are
the m = ±1 levels for positive wθ .

strong JT coupling until much larger values of KH/h̄ωH than
with no distortion. These features can be attributed to changes
in the form of the rotational wavefunction. The effect of the
distortion is to select out a circle of minimum-energy points
characterized by the angle φ for a fixed value of θ (namely
θ = π/2 for wθ > 0 and θ = 0 for wθ < 0), whereas for no
distortion all values of the angle θ also result in the minimum
energy. Therefore one of the two pseudorotations for zero
distortion is converted into a vibration with a strong distortion.
As a consequence, there is a significant change in the rotational
wavefunction as the strength of the distortion increases, from

Figure 4. Plot of (Eh + EJT)/(h̄ωH) versus KH/h̄ωH for a distortion
wν where ν = ε, 4, 5 or 6. The lower (solid black) curves are the
lowest three energies for the lowest allowed value of m and
wν/h̄ωH = ±5, and the upper (dashed blue) curves are the
corresponding energies for wν/h̄ωH = ±0.5.

one which is not localized in θ to one which is. In the strong
distortion limit, the wavefunction is really one for a vibration
in this coordinate rather than a function for a rotation.

The energies in figure 3 were calculated by integrating
over all points {θ, φ} that form the trough of minimum-energy
points with no distortion. However, as θ is fixed at a specific
value for a strong distortion, a good approximation to the
energy for large distortions can be obtained if we fix θ to this
value and only integrate over φ. This reduces the integrals from
four dimensions to two. When this is done, we find that the
results are very similar to those with the full four-dimensional
integrals. For example, results for |wθ | = 5h̄ωH only differ
by ≈0.01h̄ωH. Hence a good approximation to the energies
for a strong distortion can be found by integrating over two
dimensions only.

4.2. Distortion in directions {ε, 4, 5, 6}
As mentioned in section 3.2, the minimum in Ueff for a
distortion Wν is at the same value for all directions ν = ε,
4, 5 and 6, and also at the same value irrespective of the
sign of wν . As a consequence, we expect the energies of the
rovibronic states to be the same for all of these cases. In fact,
this provides a useful check on the method of calculation. From
our calculations, we find agreement to at least 10−5h̄ωH for
distortions wν with the different values of ν above, and for
equivalent positive and negative distortions.

As mentioned previously, only states with m even are
allowed for thew4 andw5-type strains, whereas m must be odd
for wε and w6-type strains. Figure 4 shows the average energy
of the lowest three rotational states of the lowest allowed value
of m, namely for m = ±1 for ν = ε or 6 and m = 0 for ν = 4
or 5. The upper (dashed blue) results are for a weak distortion
of |wν | = 0.5h̄ωH, and the lower (solid black) results are for a
strong distortion of |wν | = 5h̄ωH. As expected, figure 4 shows
that the effect of a stronger distortion is larger than that of a
weaker distortion.

For a strong distortion in the θ direction, we found that
a good approximation to the energies Eh can be obtained by
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Figure 5. Plot of (Eh + EJT)/(h̄ωH) versus |wν |/h̄ωH for a distortion
wν where ν = ε, 4, 5 or 6. The solid curve is for wθ positive, the
dot-dash line is for wθ negative, and the dashed line is for |wν |/h̄ωH

with ν = ε, 4, 5 or 6.

integrating over the angles that define the minimum-energy
points only. The same is true here, although the result is even
simpler as the minimum in energy occurs for fixed angles θ and
φ. Therefore it is not necessary to evaluate any integrals at all.

4.3. Comparison of different directions of distortion

We can investigate the effect of different distortions further by
plotting results at a fixed coupling constant KH as a function
of the magnitude of the distortion. Figure 5 shows results
for KH/h̄ωH = 10. The solid line is for wθ positive, the
dot-dashed line is for wθ negative, and the dashed line is for
|wν |/h̄ωH with ν = ε, 4, 5 or 6.

The results can be interpreted as follows. As already
stated, there is a two-dimensional trough of minimum-energy
points in the APES when there is no distortion [14]. The
motion of the system consists of a pseudorotation (i.e. a
rotation of a distortion) in two directions around the trough,
and vibrations in three directions perpendicular to the trough.
When a small θ -type distortion is introduced, a circle of points
on this sphere of minimum-energy points will become lower
in energy than the other points, producing a shallow one-
dimensional trough. One of the two pseudorotations will
then become a hindered rotation, whereby a distortion still
rotates but there is a preference for a particular distortion. As
the strength of the distortion increases further, the hindered
rotation will turn into a vibration about the minimum-energy
point. However, other points on the APES will still influence
the overall motion at these strengths. When the distortion
becomes very strong, the motion will consist entirely of
four vibrations and a pseudorotation. Further increases in
the strength of the distortion lower the energy of the one-
dimensional trough, but will not alter which points contribute
to the motion.

When a small distortion in any of the directions ε, 4, 5
or 6 is introduced, a single point on the sphere of minimum-
energy points will become lower in energy than the other
points, producing a shallow potential well. Both of the
pseudorotations will become hindered rotations, which turn

into vibrations as the strength of the distortion increases
further. Further increases in the strength of the distortion
lower the energy of the potential well but, as with the θ -type
distortion, will not alter which points contribute to the motion.

As a consequence of the above interpretation, we expect
curves of energy against the strength of the distortion to
become linear for strong distortions in any direction, with
a negative gradient (to indicate that increasing the distortion
strength lowers the energy) whose magnitude is closely related
to the value of the energy lowering due to the distortion terms.
From section 3.3, we can see that this would predict gradients
of −0.5 and −1 for positive and negative θ -type distortions
respectively, and of −√

3/2 ≈ −0.866 for an ε-type distortion.
Figure 5 shows that for strong distortions, the variation in
energy is indeed linear, with gradients of −0.485, −1.285
and −0.588 for the three cases above respectively. This
indicates that, for sufficiently large distortions, there is indeed a
correlation between the gradients and the energy lowering due
to the distortion terms.

5. Conclusion

In this paper, we have examined a linear T ⊗ h JT system
subject to an additional symmetry-lowering distortion that can
be written in terms of the electronic operators σλ used to
describe the intramolecular JT interaction. Physically, this
situation could represent a single C−

60 ion subject to an external
stress. However, a situation which is likely to be of much
greater practical importance is a cluster or continuous solid of
interacting C−

60 ions, such as found in the AC60 alkali-doped
fullerides (where A is an alkali metal). In a molecular field
approximation, the effect on a given C−

60 ion of cooperative
JT interactions with other C−

60 ions can be modelled using
such terms. The cooperative interactions will result in real
distortions of the icosahedral (Ih) cage of the C60 molecule to
a lower symmetry.

There is currently much interest in the use of C60 and
its derivatives adsorbed onto surfaces, where there is the
possibility of transferring some of the unique properties
of C60 to a solid interface. This could have important
technological implications relating to coatings and other
surface modifications [28]. Being able to control the properties
of organic materials leads to the possibility of exploitation
in future nanostructured devices, with potential applications
ranging from electronics to medicine [29]. In general,
the interaction of a C60 anion with a surface will also
lead to a distortion of a system. It has therefore been
suggested that surface interactions could be written (again
phenomenologically), at least to a first approximation, in terms
of an expansion in the σλ for an h mode, which would result in
a similar symmetry-lowering distortion to that used to describe
cooperative JT effects [30]. However, to do this, the relevant
operators must have a symmetry appropriate to that of both the
adsorbed molecule and of the surface. This will depend upon
the symmetry of the site at which the molecule is adsorbed.
Therefore, it may or may not be appropriate for a real situation.
If this is not the case for a given surface interaction, then
it will be necessary to construct an alternative form for Hsλ.
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Nevertheless, an analysis similar to that used here could then
follow.

The results of our calculations give the change in energy
of the vibronic states of the C−

60 ion due to the introduction of
symmetry-lowering terms. It might be hoped that the results
could be predicted, at least approximately, from the rather
simpler analysis of the effective potential, Ueff. However,
this is not found to be the case due to significant changes in
the form of the wavefunction when a distortion is introduced.
It is nevertheless possible to simplify the calculations for
strong distortions by only integrating over angles that result
in minimum-energy positions (for a θ -type distortion) or by
evaluating the energy at fixed angles (for an ε, 4, 5 or 6 type
distortion).

Distortions related to the normal mode displacements of
an h mode are possible in five different mutually orthogonal
directions, or in any linear combination of those directions.
In the linear E ⊗ e JT system, the LAPES contains a trough
of equivalent minimum-energy points, known as the Mexican
hat potential. It has previously been found that when an
additional distortion is applied, the results do not depend upon
the direction of the distortion [31]. As the linear T⊗h problem
also contains a trough of minimum-energy points, it might
be expected that results for distortions in different directions
would also be equivalent. However, this is found to be not the
case. A distortion in the θ direction is different from that along
any of the other four symmetry directions (ε, 4, 5 and 6), which
are however equivalent amongst themselves. Also, a distortion
in the positive θ direction is different to that in a negative
θ direction, whereas for the other four directions the results
do not depend on the sign of the distortion. When a linear
combination of the five symmetry directions is considered,
a complex set of results is obtained, with energies ranging
from that of the positive θ -direction to that of the negative
θ -direction. The rich nature of the results arises from the
high dimensionality of the problem. Care must be taken
when extrapolating results from simpler physical situations
involving lower dimensions. The icosahedral symmetry of
the C60 molecule is the highest point-group symmetry found
in nature. Our results are an example of where the high
symmetry produces features not seen in systems of lower
symmetry. Other cases where the high symmetry produces
unexpected results includes the H ⊗ h JT system, where non-
simple reducibility of the product H ⊗ H can result in a singlet
ground state rather than the expected five-fold state [32, 33].
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Faigel G and Jànossy A 1994 Phys. Rev. Lett. 72 2721–4
[9] Remova A A, Levashov V A, Shpakov V P, Paek U H and

Belosludov V R 1997 Synth. Met. 86 2391–2
[10] Blank V D, Buga S G, Serebryanaya N R, Dubitsky G A,

Sulyanov S N, Popov M Yu, Denisov V N, Ivlev A N and
Mavrin B N 1996 Phys. Lett. A 220 149

[11] Ceulemans A, Chibotaru L F and Cimpoesu F 1997 Phys. Rev.
Lett. 78 3725–8

[12] Stephens P W, Mihaly L, Lee P L, Whetten R L, Huang S M,
Kaner R, Deiderich F and Holczer K 1991 Nature 351 632

[13] Dresselhaus M S and Dresselhaus G 1995 Annu. Rev. Mater.
Sci. 25 487–523

[14] Chancey C C and O’Brien M C M 1997 The Jahn–Teller Effect
in C60 and other Icosahedral Complexes (Princeton, NJ:
Princeton University Press)

[15] Kaplan M D and Vekhter B G 1995 Cooperative Phenomena in
Jahn–Teller Crystals (New York: Plenum Press)

[16] Dunn J L 2004 Phys. Rev. B 69 064303
[17] Feiner L F 1982 J. Phys. C: Solid State Phys. 15 1495
[18] O’Brien M C M 1983 J. Phys. C: Solid State Phys. 16 85–106
[19] Dunn J L and Bates C A 1995 Phys. Rev. B 52 5996–6005
[20] O’Brien M C M 1996 Phys. Rev. B 53 3775
[21] Dunn J L, Eccles M R, Liu Y M and Bates C A 2002 Phys. Rev.

B 65 115107
[22] Abramowitz M and Stegun I A 1964 Handbook of

Mathematical Functions (New York: Dover)
[23] Bevilacqua G, Martinelli L and Parravicini G P 1998 Rev. Mex.

Fı́s. 44 15
[24] Van Loan C F and Golub G H 1996 Matrix Computations

(Baltimore: John Hopkins University Press)
[25] Simon H D 1984 Linear Algebr. Appl. 61 101
[26] Parlett B N and Scott D S 1979 Math. Comput. 33 217
[27] Bai Z J, Day D and Ye Q 1999 SIAM J. Matrix Anal. Appl.

20 1060
[28] Bonifazi D, Enger O and Diederich F 2007 Chem. Soc. Rev.

36 390–414
[29] Zhang E Y and Wang C R 2009 Curr. Opin. Colloid Interface

Sci. 14 148–56
[30] Hands I D, Dunn J L, Rawlinson C S A and Bates C A 2009

Jahn–Teller effects in molecules on surfaces with specific
application to C60 The Jahn–Teller Effect Advances and
Perspectives (Springer Series in Chemical Physics) ed
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